Artwork

תוכן מסופק על ידי Hugo Bowne-Anderson. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Hugo Bowne-Anderson או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Episode 57: AI Agents and LLM Judges at Scale: Processing Millions of Documents (Without Breaking the Bank)

41:27
 
שתפו
 

Manage episode 503210716 series 3317544
תוכן מסופק על ידי Hugo Bowne-Anderson. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Hugo Bowne-Anderson או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

While many people talk about “agents,” Shreya Shankar (UC Berkeley) has been building the systems that make them reliable. In this episode, she shares how AI agents and LLM judges can be used to process millions of documents accurately and cheaply.

Drawing from work on projects ranging from databases of police misconduct reports to large-scale customer transcripts, Shreya explains the frameworks, error analysis, and guardrails needed to turn flaky LLM outputs into trustworthy pipelines.

We talk through:

  • Treating LLM workflows as ETL pipelines for unstructured text
  • Error analysis: why you need humans reviewing the first 50–100 traces
  • Guardrails like retries, validators, and “gleaning”
  • How LLM judges work — rubrics, pairwise comparisons, and cost trade-offs
  • Cheap vs. expensive models: when to swap for savings
  • Where agents fit in (and where they don’t)

If you’ve ever wondered how to move beyond unreliable demos, this episode shows how to scale LLMs to millions of documents — without breaking the bank.

LINKS

🎓 Learn more:

  continue reading

60 פרקים

Artwork
iconשתפו
 
Manage episode 503210716 series 3317544
תוכן מסופק על ידי Hugo Bowne-Anderson. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Hugo Bowne-Anderson או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

While many people talk about “agents,” Shreya Shankar (UC Berkeley) has been building the systems that make them reliable. In this episode, she shares how AI agents and LLM judges can be used to process millions of documents accurately and cheaply.

Drawing from work on projects ranging from databases of police misconduct reports to large-scale customer transcripts, Shreya explains the frameworks, error analysis, and guardrails needed to turn flaky LLM outputs into trustworthy pipelines.

We talk through:

  • Treating LLM workflows as ETL pipelines for unstructured text
  • Error analysis: why you need humans reviewing the first 50–100 traces
  • Guardrails like retries, validators, and “gleaning”
  • How LLM judges work — rubrics, pairwise comparisons, and cost trade-offs
  • Cheap vs. expensive models: when to swap for savings
  • Where agents fit in (and where they don’t)

If you’ve ever wondered how to move beyond unreliable demos, this episode shows how to scale LLMs to millions of documents — without breaking the bank.

LINKS

🎓 Learn more:

  continue reading

60 פרקים

Alle episoder

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה