Artwork

תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

GSMSymbolic paper - Iman Mirzadeh (Apple)

1:11:23
 
שתפו
 

Manage episode 472358812 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Iman Mirzadeh from Apple, who recently published the GSM-Symbolic paper discusses the crucial distinction between intelligence and achievement in AI systems. He critiques current AI research methodologies, highlighting the limitations of Large Language Models (LLMs) in reasoning and knowledge representation.

SPONSOR MESSAGES:

***

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT + RESEARCH:

https://www.dropbox.com/scl/fi/mlcjl9cd5p1kem4l0vqd3/IMAN.pdf?rlkey=dqfqb74zr81a5gqr8r6c8isg3&dl=0

TOC:

1. Intelligence vs Achievement in AI Systems

[00:00:00] 1.1 Intelligence vs Achievement Metrics in AI Systems

[00:03:27] 1.2 AlphaZero and Abstract Understanding in Chess

[00:10:10] 1.3 Language Models and Distribution Learning Limitations

[00:14:47] 1.4 Research Methodology and Theoretical Frameworks

2. Intelligence Measurement and Learning

[00:24:24] 2.1 LLM Capabilities: Interpolation vs True Reasoning

[00:29:00] 2.2 Intelligence Definition and Measurement Approaches

[00:34:35] 2.3 Learning Capabilities and Agency in AI Systems

[00:39:26] 2.4 Abstract Reasoning and Symbol Understanding

3. LLM Performance and Evaluation

[00:47:15] 3.1 Scaling Laws and Fundamental Limitations

[00:54:33] 3.2 Connectionism vs Symbolism Debate in Neural Networks

[00:58:09] 3.3 GSM-Symbolic: Testing Mathematical Reasoning in LLMs

[01:08:38] 3.4 Benchmark Evaluation and Model Performance Assessment

REFS:

[00:01:00] AlphaZero chess AI system, Silver et al.

https://arxiv.org/abs/1712.01815

[00:07:10] Game Changer: AlphaZero's Groundbreaking Chess Strategies, Sadler & Regan

https://www.amazon.com/Game-Changer-AlphaZeros-Groundbreaking-Strategies/dp/9056918184

[00:11:35] Cross-entropy loss in language modeling, Voita

http://lena-voita.github.io/nlp_course/language_modeling.html

[00:17:20] GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in LLMs, Mirzadeh et al.

https://arxiv.org/abs/2410.05229

[00:21:25] Connectionism and Cognitive Architecture: A Critical Analysis, Fodor & Pylyshyn

https://www.sciencedirect.com/science/article/pii/001002779090014B

[00:28:55] Brain-to-body mass ratio scaling laws, Sutskever

https://www.theverge.com/2024/12/13/24320811/what-ilya-sutskever-sees-openai-model-data-training

[00:29:40] On the Measure of Intelligence, Chollet

https://arxiv.org/abs/1911.01547

[00:33:30] On definition of intelligence, Gignac et al.

https://www.sciencedirect.com/science/article/pii/S0160289624000266

[00:35:30] Defining intelligence, Wang

https://cis.temple.edu/~wangp/papers.html

[00:37:40] How We Learn: Why Brains Learn Better Than Any Machine... for Now, Dehaene

https://www.amazon.com/How-We-Learn-Brains-Machine/dp/0525559884

[00:39:35] Surfaces and Essences: Analogy as the Fuel and Fire of Thinking, Hofstadter and Sander

https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475

[00:43:15] Chain-of-thought prompting, Wei et al.

https://arxiv.org/abs/2201.11903

[00:47:20] Test-time scaling laws in machine learning, Brown

https://podcasts.apple.com/mv/podcast/openais-noam-brown-ilge-akkaya-and-hunter-lightman-on/id1750736528?i=1000671532058

[00:47:50] Scaling Laws for Neural Language Models, Kaplan et al.

https://arxiv.org/abs/2001.08361

[00:55:15] Tensor product variable binding, Smolensky

https://www.sciencedirect.com/science/article/abs/pii/000437029090007M

[01:08:45] GSM-8K dataset, OpenAI

https://huggingface.co/datasets/openai/gsm8k

  continue reading

230 פרקים

Artwork
iconשתפו
 
Manage episode 472358812 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Iman Mirzadeh from Apple, who recently published the GSM-Symbolic paper discusses the crucial distinction between intelligence and achievement in AI systems. He critiques current AI research methodologies, highlighting the limitations of Large Language Models (LLMs) in reasoning and knowledge representation.

SPONSOR MESSAGES:

***

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT + RESEARCH:

https://www.dropbox.com/scl/fi/mlcjl9cd5p1kem4l0vqd3/IMAN.pdf?rlkey=dqfqb74zr81a5gqr8r6c8isg3&dl=0

TOC:

1. Intelligence vs Achievement in AI Systems

[00:00:00] 1.1 Intelligence vs Achievement Metrics in AI Systems

[00:03:27] 1.2 AlphaZero and Abstract Understanding in Chess

[00:10:10] 1.3 Language Models and Distribution Learning Limitations

[00:14:47] 1.4 Research Methodology and Theoretical Frameworks

2. Intelligence Measurement and Learning

[00:24:24] 2.1 LLM Capabilities: Interpolation vs True Reasoning

[00:29:00] 2.2 Intelligence Definition and Measurement Approaches

[00:34:35] 2.3 Learning Capabilities and Agency in AI Systems

[00:39:26] 2.4 Abstract Reasoning and Symbol Understanding

3. LLM Performance and Evaluation

[00:47:15] 3.1 Scaling Laws and Fundamental Limitations

[00:54:33] 3.2 Connectionism vs Symbolism Debate in Neural Networks

[00:58:09] 3.3 GSM-Symbolic: Testing Mathematical Reasoning in LLMs

[01:08:38] 3.4 Benchmark Evaluation and Model Performance Assessment

REFS:

[00:01:00] AlphaZero chess AI system, Silver et al.

https://arxiv.org/abs/1712.01815

[00:07:10] Game Changer: AlphaZero's Groundbreaking Chess Strategies, Sadler & Regan

https://www.amazon.com/Game-Changer-AlphaZeros-Groundbreaking-Strategies/dp/9056918184

[00:11:35] Cross-entropy loss in language modeling, Voita

http://lena-voita.github.io/nlp_course/language_modeling.html

[00:17:20] GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in LLMs, Mirzadeh et al.

https://arxiv.org/abs/2410.05229

[00:21:25] Connectionism and Cognitive Architecture: A Critical Analysis, Fodor & Pylyshyn

https://www.sciencedirect.com/science/article/pii/001002779090014B

[00:28:55] Brain-to-body mass ratio scaling laws, Sutskever

https://www.theverge.com/2024/12/13/24320811/what-ilya-sutskever-sees-openai-model-data-training

[00:29:40] On the Measure of Intelligence, Chollet

https://arxiv.org/abs/1911.01547

[00:33:30] On definition of intelligence, Gignac et al.

https://www.sciencedirect.com/science/article/pii/S0160289624000266

[00:35:30] Defining intelligence, Wang

https://cis.temple.edu/~wangp/papers.html

[00:37:40] How We Learn: Why Brains Learn Better Than Any Machine... for Now, Dehaene

https://www.amazon.com/How-We-Learn-Brains-Machine/dp/0525559884

[00:39:35] Surfaces and Essences: Analogy as the Fuel and Fire of Thinking, Hofstadter and Sander

https://www.amazon.com/Surfaces-Essences-Analogy-Fuel-Thinking/dp/0465018475

[00:43:15] Chain-of-thought prompting, Wei et al.

https://arxiv.org/abs/2201.11903

[00:47:20] Test-time scaling laws in machine learning, Brown

https://podcasts.apple.com/mv/podcast/openais-noam-brown-ilge-akkaya-and-hunter-lightman-on/id1750736528?i=1000671532058

[00:47:50] Scaling Laws for Neural Language Models, Kaplan et al.

https://arxiv.org/abs/2001.08361

[00:55:15] Tensor product variable binding, Smolensky

https://www.sciencedirect.com/science/article/abs/pii/000437029090007M

[01:08:45] GSM-8K dataset, OpenAI

https://huggingface.co/datasets/openai/gsm8k

  continue reading

230 פרקים

Alle episoder

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה