Artwork

תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Test-Time Adaptation: the key to reasoning with DL (Mohamed Osman)

1:03:36
 
שתפו
 

Manage episode 472811068 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Mohamed Osman joins to discuss MindsAI's highest scoring entry to the ARC challenge 2024 and the paradigm of test-time fine-tuning. They explore how the team, now part of Tufa Labs in Zurich, achieved state-of-the-art results using a combination of pre-training techniques, a unique meta-learning strategy, and an ensemble voting mechanism. Mohamed emphasizes the importance of raw data input and flexibility of the network.

SPONSOR MESSAGES:

***

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT + REFS:

https://www.dropbox.com/scl/fi/jeavyqidsjzjgjgd7ns7h/MoFInal.pdf?rlkey=cjjmo7rgtenxrr3b46nk6yq2e&dl=0

Mohamed Osman (Tufa Labs)

https://x.com/MohamedOsmanML

Jack Cole (Tufa Labs)

https://x.com/MindsAI_Jack

How and why deep learning for ARC paper:

https://github.com/MohamedOsman1998/deep-learning-for-arc/blob/main/deep_learning_for_arc.pdf

TOC:

1. Abstract Reasoning Foundations

[00:00:00] 1.1 Test-Time Fine-Tuning and ARC Challenge Overview

[00:10:20] 1.2 Neural Networks vs Programmatic Approaches to Reasoning

[00:13:23] 1.3 Code-Based Learning and Meta-Model Architecture

[00:20:26] 1.4 Technical Implementation with Long T5 Model

2. ARC Solution Architectures

[00:24:10] 2.1 Test-Time Tuning and Voting Methods for ARC Solutions

[00:27:54] 2.2 Model Generalization and Function Generation Challenges

[00:32:53] 2.3 Input Representation and VLM Limitations

[00:36:21] 2.4 Architecture Innovation and Cross-Modal Integration

[00:40:05] 2.5 Future of ARC Challenge and Program Synthesis Approaches

3. Advanced Systems Integration

[00:43:00] 3.1 DreamCoder Evolution and LLM Integration

[00:50:07] 3.2 MindsAI Team Progress and Acquisition by Tufa Labs

[00:54:15] 3.3 ARC v2 Development and Performance Scaling

[00:58:22] 3.4 Intelligence Benchmarks and Transformer Limitations

[01:01:50] 3.5 Neural Architecture Optimization and Processing Distribution

REFS:

[00:01:32] Original ARC challenge paper, François Chollet

https://arxiv.org/abs/1911.01547

[00:06:55] DreamCoder, Kevin Ellis et al.

https://arxiv.org/abs/2006.08381

[00:12:50] Deep Learning with Python, François Chollet

https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438

[00:13:35] Deep Learning with Python, François Chollet

https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438

[00:13:35] Influence of pretraining data for reasoning, Laura Ruis

https://arxiv.org/abs/2411.12580

[00:17:50] Latent Program Networks, Clement Bonnet

https://arxiv.org/html/2411.08706v1

[00:20:50] T5, Colin Raffel et al.

https://arxiv.org/abs/1910.10683

[00:30:30] Combining Induction and Transduction for Abstract Reasoning, Wen-Ding Li, Kevin Ellis et al.

https://arxiv.org/abs/2411.02272

[00:34:15] Six finger problem, Chen et al.

https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_SpatialVLM_Endowing_Vision-Language_Models_with_Spatial_Reasoning_Capabilities_CVPR_2024_paper.pdf

[00:38:15] DeepSeek-R1-Distill-Llama, DeepSeek AI

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B

[00:40:10] ARC Prize 2024 Technical Report, François Chollet et al.

https://arxiv.org/html/2412.04604v2

[00:45:20] LLM-Guided Compositional Program Synthesis, Wen-Ding Li and Kevin Ellis

https://arxiv.org/html/2503.15540

[00:54:25] Abstraction and Reasoning Corpus, François Chollet

https://github.com/fchollet/ARC-AGI

[00:57:10] O3 breakthrough on ARC-AGI, OpenAI

https://arcprize.org/

[00:59:35] ConceptARC Benchmark, Arseny Moskvichev, Melanie Mitchell

https://arxiv.org/abs/2305.07141

[01:02:05] Mixtape: Breaking the Softmax Bottleneck Efficiently, Yang, Zhilin and Dai, Zihang and Salakhutdinov, Ruslan and Cohen, William W.

http://papers.neurips.cc/paper/9723-mixtape-breaking-the-softmax-bottleneck-efficiently.pdf

  continue reading

217 פרקים

Artwork
iconשתפו
 
Manage episode 472811068 series 2803422
תוכן מסופק על ידי Machine Learning Street Talk (MLST). כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Machine Learning Street Talk (MLST) או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Mohamed Osman joins to discuss MindsAI's highest scoring entry to the ARC challenge 2024 and the paradigm of test-time fine-tuning. They explore how the team, now part of Tufa Labs in Zurich, achieved state-of-the-art results using a combination of pre-training techniques, a unique meta-learning strategy, and an ensemble voting mechanism. Mohamed emphasizes the importance of raw data input and flexibility of the network.

SPONSOR MESSAGES:

***

Tufa AI Labs is a brand new research lab in Zurich started by Benjamin Crouzier focussed on o-series style reasoning and AGI. They are hiring a Chief Engineer and ML engineers. Events in Zurich.

Goto https://tufalabs.ai/

***

TRANSCRIPT + REFS:

https://www.dropbox.com/scl/fi/jeavyqidsjzjgjgd7ns7h/MoFInal.pdf?rlkey=cjjmo7rgtenxrr3b46nk6yq2e&dl=0

Mohamed Osman (Tufa Labs)

https://x.com/MohamedOsmanML

Jack Cole (Tufa Labs)

https://x.com/MindsAI_Jack

How and why deep learning for ARC paper:

https://github.com/MohamedOsman1998/deep-learning-for-arc/blob/main/deep_learning_for_arc.pdf

TOC:

1. Abstract Reasoning Foundations

[00:00:00] 1.1 Test-Time Fine-Tuning and ARC Challenge Overview

[00:10:20] 1.2 Neural Networks vs Programmatic Approaches to Reasoning

[00:13:23] 1.3 Code-Based Learning and Meta-Model Architecture

[00:20:26] 1.4 Technical Implementation with Long T5 Model

2. ARC Solution Architectures

[00:24:10] 2.1 Test-Time Tuning and Voting Methods for ARC Solutions

[00:27:54] 2.2 Model Generalization and Function Generation Challenges

[00:32:53] 2.3 Input Representation and VLM Limitations

[00:36:21] 2.4 Architecture Innovation and Cross-Modal Integration

[00:40:05] 2.5 Future of ARC Challenge and Program Synthesis Approaches

3. Advanced Systems Integration

[00:43:00] 3.1 DreamCoder Evolution and LLM Integration

[00:50:07] 3.2 MindsAI Team Progress and Acquisition by Tufa Labs

[00:54:15] 3.3 ARC v2 Development and Performance Scaling

[00:58:22] 3.4 Intelligence Benchmarks and Transformer Limitations

[01:01:50] 3.5 Neural Architecture Optimization and Processing Distribution

REFS:

[00:01:32] Original ARC challenge paper, François Chollet

https://arxiv.org/abs/1911.01547

[00:06:55] DreamCoder, Kevin Ellis et al.

https://arxiv.org/abs/2006.08381

[00:12:50] Deep Learning with Python, François Chollet

https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438

[00:13:35] Deep Learning with Python, François Chollet

https://www.amazon.com/Deep-Learning-Python-Francois-Chollet/dp/1617294438

[00:13:35] Influence of pretraining data for reasoning, Laura Ruis

https://arxiv.org/abs/2411.12580

[00:17:50] Latent Program Networks, Clement Bonnet

https://arxiv.org/html/2411.08706v1

[00:20:50] T5, Colin Raffel et al.

https://arxiv.org/abs/1910.10683

[00:30:30] Combining Induction and Transduction for Abstract Reasoning, Wen-Ding Li, Kevin Ellis et al.

https://arxiv.org/abs/2411.02272

[00:34:15] Six finger problem, Chen et al.

https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_SpatialVLM_Endowing_Vision-Language_Models_with_Spatial_Reasoning_Capabilities_CVPR_2024_paper.pdf

[00:38:15] DeepSeek-R1-Distill-Llama, DeepSeek AI

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B

[00:40:10] ARC Prize 2024 Technical Report, François Chollet et al.

https://arxiv.org/html/2412.04604v2

[00:45:20] LLM-Guided Compositional Program Synthesis, Wen-Ding Li and Kevin Ellis

https://arxiv.org/html/2503.15540

[00:54:25] Abstraction and Reasoning Corpus, François Chollet

https://github.com/fchollet/ARC-AGI

[00:57:10] O3 breakthrough on ARC-AGI, OpenAI

https://arcprize.org/

[00:59:35] ConceptARC Benchmark, Arseny Moskvichev, Melanie Mitchell

https://arxiv.org/abs/2305.07141

[01:02:05] Mixtape: Breaking the Softmax Bottleneck Efficiently, Yang, Zhilin and Dai, Zihang and Salakhutdinov, Ruslan and Cohen, William W.

http://papers.neurips.cc/paper/9723-mixtape-breaking-the-softmax-bottleneck-efficiently.pdf

  continue reading

217 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה