Artwork

תוכן מסופק על ידי Zeta Alpha. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Zeta Alpha או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Transformer Memory as a Differentiable Search Index: memorizing thousands of random doc ids works!?

1:01:40
 
שתפו
 

Manage episode 355037188 series 3446693
תוכן מסופק על ידי Zeta Alpha. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Zeta Alpha או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Andrew Yates and Sergi Castella discuss the paper titled "Transformer Memory as a Differentiable Search Index" by Yi Tay et al at Google. This work proposes a new approach to document retrieval in which document ids are memorized by a transformer during training (or "indexing") and for retrieval, a query is fed to the model, which then generates autoregressively relevant doc ids for that query.

Paper: https://arxiv.org/abs/2202.06991

Timestamps:

00:00 Intro: Transformer memory as a Differentiable Search Index (DSI)

01:15 The gist of the paper, motivation

4:20 Related work: Autoregressive Entity Linking

7:38 What is an index? Conventional vs. "differentiable"

10:20 Indexing and Retrieval definitions in the context of the DSI

12:40 Learning representations for documents

17:20 How to represent document ids: atomic, string, semantically relevant

22:00 Zero-shot vs. finetuned settings

24:10 Datasets and baselines

27:08 Dinetuned results

36:40 Zero-shot results

43:50 Ablation results

47:15 Where could this model be useds?

52:00 Is memory efficiency a fundamental problem of this approach?

55:14 What about semantically relevant doc ids?

60:30 Closing remarks

Contact: castella@zeta-alpha.com

  continue reading

21 פרקים

Artwork
iconשתפו
 
Manage episode 355037188 series 3446693
תוכן מסופק על ידי Zeta Alpha. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Zeta Alpha או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Andrew Yates and Sergi Castella discuss the paper titled "Transformer Memory as a Differentiable Search Index" by Yi Tay et al at Google. This work proposes a new approach to document retrieval in which document ids are memorized by a transformer during training (or "indexing") and for retrieval, a query is fed to the model, which then generates autoregressively relevant doc ids for that query.

Paper: https://arxiv.org/abs/2202.06991

Timestamps:

00:00 Intro: Transformer memory as a Differentiable Search Index (DSI)

01:15 The gist of the paper, motivation

4:20 Related work: Autoregressive Entity Linking

7:38 What is an index? Conventional vs. "differentiable"

10:20 Indexing and Retrieval definitions in the context of the DSI

12:40 Learning representations for documents

17:20 How to represent document ids: atomic, string, semantically relevant

22:00 Zero-shot vs. finetuned settings

24:10 Datasets and baselines

27:08 Dinetuned results

36:40 Zero-shot results

43:50 Ablation results

47:15 Where could this model be useds?

52:00 Is memory efficiency a fundamental problem of this approach?

55:14 What about semantically relevant doc ids?

60:30 Closing remarks

Contact: castella@zeta-alpha.com

  continue reading

21 פרקים

All episodes

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה