32 subscribers
התחל במצב לא מקוון עם האפליקציה Player FM !
פודקאסטים ששווה להאזין
בחסות


1 Sweetgreen's CEO explains why his salads are so expensive 1:12:26
Decoupling with Event-Driven Architecture
Manage episode 424666725 series 2510642
In principle, data mesh architecture should liberate teams to build their systems and gather data in a distributed way, without having to explicitly coordinate. Data is the thing that can and should decouple teams, but proper implementation has its challenges.
In this episode, Kris talks to Florian Albrecht (Solution Architect, Hermes Germany) about Galapagos, an open-source DevOps software tool for Apache Kafka® that Albrecht created with his team at Hermes, a German parcel delivery company.
After Hermes chose Kafka to implement company-wide event-driven architecture, Albrecht’s team created rules and guidelines on how to use and really make the most out of Kafka. But the hands-off approach wasn’t leading to greater independence, so Albrecht’s team tried something different to documentation— they encoded the rules as software.
This method pushed the teams to stop thinking in terms of data and to start thinking in terms of events. Previously, applications copied data from one point to another, with slight changes each time. In the end, teams with conflicting data were left asking when the data changed and why, with a real impact on customers who might be left wondering when their parcel was redirected and how. Every application would then have to be checked to find out when exactly the data was changed. Event architecture terminates this cycle.
Events are immutable and changes are registered as new domain-specific events. Packaged together as event envelopes, they can be safely copied to other applications, and can provide significant insights. No need to check each application to find out when manually entered or imported data was changed—the complete history exists in the event envelope. More importantly, no more time-consuming collaborations where teams help each other to interpret the data.
Using Galapagos helped the teams at Hermes to switch their thought process from raw data to event-driven. Galapagos also empowers business teams to take charge of their own data needs by providing a protective buffer. When specific teams, providers of data or events, want to change something, Galapagos enforces a method which will not kill the production applications already reading the data. Teams can add new fields which existing applications can ignore, but a previously required field that an application could be relying on won’t be changeable.
Business partners using Galapagos found they were better prepared to give answers to their developer colleagues, allowing different parts of the business to communicate in ways they hadn’t before. Through Galapagos, Hermes saw better success decoupling teams.
EPISODE LINKS
- A Guide to Data Mesh
- Practical Data Mesh ebook
- Galapagos GitHub
- Florian Albrecht GitHub
- Watch the video
- Join the Confluent Community
- Learn more with Kafka tutorials, resources, and guides at Confluent Developer
- Live demo: Intro to Event-Driven Microservices with Confluent
- Use PODCAST100 to get $100 of free Confluent Cloud usage (details)
פרקים
1. Intro (00:00:00)
2. What is Galapagos? (00:02:50)
3. Moving from data to events (00:04:52)
4. Enforcing rules and guidelines with Galapagos (00:09:57)
5. Business impact of using an event-driven architecture (00:19:13)
6. Galapagos and Confluent Cloud (00:23:04)
7. Challenges of moving to an event-driven architecture (00:25:32)
8. Getting started with Galapagos (00:30:20)
9. Principles of event-driven architecture (00:31:48)
10. It's a wrap! (00:37:00)
265 פרקים
Manage episode 424666725 series 2510642
In principle, data mesh architecture should liberate teams to build their systems and gather data in a distributed way, without having to explicitly coordinate. Data is the thing that can and should decouple teams, but proper implementation has its challenges.
In this episode, Kris talks to Florian Albrecht (Solution Architect, Hermes Germany) about Galapagos, an open-source DevOps software tool for Apache Kafka® that Albrecht created with his team at Hermes, a German parcel delivery company.
After Hermes chose Kafka to implement company-wide event-driven architecture, Albrecht’s team created rules and guidelines on how to use and really make the most out of Kafka. But the hands-off approach wasn’t leading to greater independence, so Albrecht’s team tried something different to documentation— they encoded the rules as software.
This method pushed the teams to stop thinking in terms of data and to start thinking in terms of events. Previously, applications copied data from one point to another, with slight changes each time. In the end, teams with conflicting data were left asking when the data changed and why, with a real impact on customers who might be left wondering when their parcel was redirected and how. Every application would then have to be checked to find out when exactly the data was changed. Event architecture terminates this cycle.
Events are immutable and changes are registered as new domain-specific events. Packaged together as event envelopes, they can be safely copied to other applications, and can provide significant insights. No need to check each application to find out when manually entered or imported data was changed—the complete history exists in the event envelope. More importantly, no more time-consuming collaborations where teams help each other to interpret the data.
Using Galapagos helped the teams at Hermes to switch their thought process from raw data to event-driven. Galapagos also empowers business teams to take charge of their own data needs by providing a protective buffer. When specific teams, providers of data or events, want to change something, Galapagos enforces a method which will not kill the production applications already reading the data. Teams can add new fields which existing applications can ignore, but a previously required field that an application could be relying on won’t be changeable.
Business partners using Galapagos found they were better prepared to give answers to their developer colleagues, allowing different parts of the business to communicate in ways they hadn’t before. Through Galapagos, Hermes saw better success decoupling teams.
EPISODE LINKS
- A Guide to Data Mesh
- Practical Data Mesh ebook
- Galapagos GitHub
- Florian Albrecht GitHub
- Watch the video
- Join the Confluent Community
- Learn more with Kafka tutorials, resources, and guides at Confluent Developer
- Live demo: Intro to Event-Driven Microservices with Confluent
- Use PODCAST100 to get $100 of free Confluent Cloud usage (details)
פרקים
1. Intro (00:00:00)
2. What is Galapagos? (00:02:50)
3. Moving from data to events (00:04:52)
4. Enforcing rules and guidelines with Galapagos (00:09:57)
5. Business impact of using an event-driven architecture (00:19:13)
6. Galapagos and Confluent Cloud (00:23:04)
7. Challenges of moving to an event-driven architecture (00:25:32)
8. Getting started with Galapagos (00:30:20)
9. Principles of event-driven architecture (00:31:48)
10. It's a wrap! (00:37:00)
265 פרקים
Alle afleveringen
×
1 Apache Kafka 3.5 - Kafka Core, Connect, Streams, & Client Updates 11:25

1 How to use Data Contracts for Long-Term Schema Management 57:28

1 How to use Python with Apache Kafka 31:57

1 Next-Gen Data Modeling, Integrity, and Governance with YODA 55:55

1 Migrate Your Kafka Cluster with Minimal Downtime 1:01:30

1 Real-Time Data Transformation and Analytics with dbt Labs 43:41

1 What is the Future of Streaming Data? 41:29

1 What can Apache Kafka Developers learn from Online Gaming? 55:32

1 How to use OpenTelemetry to Trace and Monitor Apache Kafka Systems 50:01

1 What is Data Democratization and Why is it Important? 47:27

1 Git for Data: Managing Data like Code with lakeFS 30:42

1 Using Kafka-Leader-Election to Improve Scalability and Performance 51:06

1 Real-Time Machine Learning and Smarter AI with Data Streaming 38:56

1 The Present and Future of Stream Processing 31:19

1 Top 6 Worst Apache Kafka JIRA Bugs 1:10:58

1 Learn How Stream-Processing Works The Simplest Way Possible 31:29

1 Building and Designing Events and Event Streams with Apache Kafka 53:06

1 Rethinking Apache Kafka Security and Account Management 41:23

1 Real-time Threat Detection Using Machine Learning and Apache Kafka 29:18

1 Improving Apache Kafka Scalability and Elasticity with Tiered Storage 29:32

1 Decoupling with Event-Driven Architecture 38:38

1 If Streaming Is the Answer, Why Are We Still Doing Batch? 43:58

1 Security for Real-Time Data Stream Processing with Confluent Cloud 48:33

1 Running Apache Kafka in Production 58:44

1 Build a Real Time AI Data Platform with Apache Kafka 37:18

1 Optimizing Apache JVMs for Apache Kafka 1:11:42

1 Application Data Streaming with Apache Kafka and Swim 39:10

1 International Podcast Day - Apache Kafka Edition | Streaming Audio Special 1:02:22


1 Real-Time Stream Processing, Monitoring, and Analytics With Apache Kafka 34:07

1 Reddit Sentiment Analysis with Apache Kafka-Based Microservices 35:23

1 Capacity Planning Your Apache Kafka Cluster 1:01:54

1 Streaming Real-Time Sporting Analytics for World Table Tennis 34:29

1 Real-Time Event Distribution with Data Mesh 48:59

1 Apache Kafka Security Best Practices 39:10

1 What Could Go Wrong with a Kafka JDBC Connector? 41:10

1 Apache Kafka Networking with Confluent Cloud 37:22

1 Event-Driven Systems and Agile Operations 53:22

1 Streaming Analytics and Real-Time Signal Processing with Apache Kafka 1:06:33

1 Blockchain Data Integration with Apache Kafka 50:59

1 Automating Multi-Cloud Apache Kafka Cluster Rollouts 48:29

1 Common Apache Kafka Mistakes to Avoid 1:09:43

1 Tips For Writing Abstracts and Speaking at Conferences 48:56

1 How I Became a Developer Advocate 29:48

1 Data Mesh Architecture: A Modern Distributed Data Model 48:42

1 Flink vs Kafka Streams/ksqlDB: Comparing Stream Processing Tools 55:55

1 Practical Data Pipeline: Build a Plant Monitoring System with ksqlDB 33:56


1 Scaling Apache Kafka Clusters on Confluent Cloud ft. Ajit Yagaty and Aashish Kohli 49:07

1 Streaming Analytics on 50M Events Per Day with Confluent Cloud at Picnic 34:41


1 Optimizing Apache Kafka's Internals with Its Co-Creator Jun Rao 48:54

1 Using Event-Driven Design with Apache Kafka Streaming Applications ft. Bobby Calderwood 51:09

1 Monitoring Extreme-Scale Apache Kafka Using eBPF at New Relic 38:25

1 Confluent Platform 7.1: New Features + Updates 10:01

1 Scaling an Apache Kafka Based Architecture at Therapie Clinic 1:10:56

1 Bridging Frontend and Backend with GraphQL and Apache Kafka ft. Gerard Klijs 23:13
ברוכים הבאים אל Player FM!
Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.