Artwork

תוכן מסופק על ידי Benoit Hardy-Vallée. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Benoit Hardy-Vallée או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

Achieving Fairness in Algorithmic Decision Making in HR

29:08
 
שתפו
 

Manage episode 354749391 series 3428014
תוכן מסופק על ידי Benoit Hardy-Vallée. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Benoit Hardy-Vallée או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Join us on this episode as we dive into the complex world of algorithmic fairness in HR with Manish Raghavan, Assistant Professor of Information Technology at the MIT Sloan School of Management. Discover the challenges and opportunities of using algorithms to make decisions about people, and learn about the importance of preventing algorithms from replicating discriminatory and unfair human decision-making. Get insights into the distinction between procedural fairness and outcome fairness, and understand why the deployment environment of a machine learning model is just as crucial as the technology itself. Gain a deeper understanding of the scoring mechanism behind algorithmic tools, and the potential dangers and consequences of their use. Learn how common signals in assessments can result in similar assessments across organizations and what it takes to achieve fairness in algorithmic decision-making in HR.
Manish page at MIT
Follow Manish on LinkedIn

  continue reading

42 פרקים

Artwork
iconשתפו
 
Manage episode 354749391 series 3428014
תוכן מסופק על ידי Benoit Hardy-Vallée. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Benoit Hardy-Vallée או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Join us on this episode as we dive into the complex world of algorithmic fairness in HR with Manish Raghavan, Assistant Professor of Information Technology at the MIT Sloan School of Management. Discover the challenges and opportunities of using algorithms to make decisions about people, and learn about the importance of preventing algorithms from replicating discriminatory and unfair human decision-making. Get insights into the distinction between procedural fairness and outcome fairness, and understand why the deployment environment of a machine learning model is just as crucial as the technology itself. Gain a deeper understanding of the scoring mechanism behind algorithmic tools, and the potential dangers and consequences of their use. Learn how common signals in assessments can result in similar assessments across organizations and what it takes to achieve fairness in algorithmic decision-making in HR.
Manish page at MIT
Follow Manish on LinkedIn

  continue reading

42 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה