Artwork

תוכן מסופק על ידי Daryl Taylor. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Daryl Taylor או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.
Player FM - אפליקציית פודקאסט
התחל במצב לא מקוון עם האפליקציה Player FM !

CSE805L12 - Introduction to Machine Learning Algorithms: KNN and Naive Bayes

8:52
 
שתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on February 10, 2025 12:10 (2M ago). Last successful fetch was on October 14, 2024 06:04 (6M ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159371 series 3603581
תוכן מסופק על ידי Daryl Taylor. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Daryl Taylor או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Episode Summary: In this episode, Eugene Uwiragiye introduces two fundamental machine learning algorithms: K-Nearest Neighbors (KNN) and Naive Bayes. He covers the importance of choosing the right K value in KNN and explains how different values can impact classification accuracy. Additionally, he provides an in-depth discussion of Naive Bayes, focusing on its reliance on Bayes' Theorem and how probabilities are calculated to make predictions. The episode offers practical insights and examples to help listeners understand the mechanics behind these algorithms and their applications.

Key Topics Covered:

  1. K-Nearest Neighbors (KNN):
    • The impact of the choice of K on classification outcomes.
    • Classification of points based on nearest neighbors and distances.
    • Understanding the importance of finding the optimal K value.
  2. Naive Bayes Classifier:
    • Introduction to Bayes' Theorem and its role in machine learning.
    • The concept of prior and posterior probabilities.
    • Likelihood and evidence in probability-based classification.
    • Applying Naive Bayes to real-world datasets.
  3. Inferential Statistics in Machine Learning:
    • The importance of using known data to predict unknown outcomes.
    • How to calculate and interpret probabilities in a classification context.

Learning Objectives:

  • Understand how K-Nearest Neighbors (KNN) works and the role of K in determining classification.
  • Grasp the fundamentals of Naive Bayes and how it uses probabilities to classify data.
  • Learn about the relationship between prior knowledge and prediction in machine learning models.

Memorable Quotes:

  • “The value of K you choose is very important, and we saw that different K values can lead to different classification results.”
  • "In machine learning, based on what you know, can you give an estimation of what you don't know?"

Actionable Takeaways:

  • Experiment with different values of K in KNN to find the one that gives the best performance for your dataset.
  • Use Naive Bayes for classification tasks where probabilistic interpretation is essential.
  • Practice calculating prior and posterior probabilities to understand how Naive Bayes arrives at its predictions.

Resources Mentioned:

Next Episode Teaser: In the next episode, we will dive into more advanced machine learning algorithms and explore how they can be applied to large-scale data.

  continue reading

20 פרקים

Artwork
iconשתפו
 

סדרה בארכיון ("עדכון לא פעיל" status)

When? This feed was archived on February 10, 2025 12:10 (2M ago). Last successful fetch was on October 14, 2024 06:04 (6M ago)

Why? עדכון לא פעיל status. השרתים שלנו לא הצליחו לאחזר פודקאסט חוקי לזמן ממושך.

What now? You might be able to find a more up-to-date version using the search function. This series will no longer be checked for updates. If you believe this to be in error, please check if the publisher's feed link below is valid and contact support to request the feed be restored or if you have any other concerns about this.

Manage episode 444159371 series 3603581
תוכן מסופק על ידי Daryl Taylor. כל תוכן הפודקאסטים כולל פרקים, גרפיקה ותיאורי פודקאסטים מועלים ומסופקים ישירות על ידי Daryl Taylor או שותף פלטפורמת הפודקאסט שלהם. אם אתה מאמין שמישהו משתמש ביצירה שלך המוגנת בזכויות יוצרים ללא רשותך, אתה יכול לעקוב אחר התהליך המתואר כאן https://he.player.fm/legal.

Episode Summary: In this episode, Eugene Uwiragiye introduces two fundamental machine learning algorithms: K-Nearest Neighbors (KNN) and Naive Bayes. He covers the importance of choosing the right K value in KNN and explains how different values can impact classification accuracy. Additionally, he provides an in-depth discussion of Naive Bayes, focusing on its reliance on Bayes' Theorem and how probabilities are calculated to make predictions. The episode offers practical insights and examples to help listeners understand the mechanics behind these algorithms and their applications.

Key Topics Covered:

  1. K-Nearest Neighbors (KNN):
    • The impact of the choice of K on classification outcomes.
    • Classification of points based on nearest neighbors and distances.
    • Understanding the importance of finding the optimal K value.
  2. Naive Bayes Classifier:
    • Introduction to Bayes' Theorem and its role in machine learning.
    • The concept of prior and posterior probabilities.
    • Likelihood and evidence in probability-based classification.
    • Applying Naive Bayes to real-world datasets.
  3. Inferential Statistics in Machine Learning:
    • The importance of using known data to predict unknown outcomes.
    • How to calculate and interpret probabilities in a classification context.

Learning Objectives:

  • Understand how K-Nearest Neighbors (KNN) works and the role of K in determining classification.
  • Grasp the fundamentals of Naive Bayes and how it uses probabilities to classify data.
  • Learn about the relationship between prior knowledge and prediction in machine learning models.

Memorable Quotes:

  • “The value of K you choose is very important, and we saw that different K values can lead to different classification results.”
  • "In machine learning, based on what you know, can you give an estimation of what you don't know?"

Actionable Takeaways:

  • Experiment with different values of K in KNN to find the one that gives the best performance for your dataset.
  • Use Naive Bayes for classification tasks where probabilistic interpretation is essential.
  • Practice calculating prior and posterior probabilities to understand how Naive Bayes arrives at its predictions.

Resources Mentioned:

Next Episode Teaser: In the next episode, we will dive into more advanced machine learning algorithms and explore how they can be applied to large-scale data.

  continue reading

20 פרקים

כל הפרקים

×
 
Loading …

ברוכים הבאים אל Player FM!

Player FM סורק את האינטרנט עבור פודקאסטים באיכות גבוהה בשבילכם כדי שתהנו מהם כרגע. זה יישום הפודקאסט הטוב ביותר והוא עובד על אנדרואיד, iPhone ואינטרנט. הירשמו לסנכרון מנויים במכשירים שונים.

 

מדריך עזר מהיר

האזן לתוכנית הזו בזמן שאתה חוקר
הפעלה